Regularity 3 in edge ideals associated to bipartite graphs

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regularity, Depth and Arithmetic Rank of Bipartite Edge Ideals

We study minimal free resolutions of edge ideals of bipartite graphs. We associate a directed graph to a bipartite graph whose edge ideal is unmixed, and give expressions for the regularity and the depth of the edge ideal in terms of invariants of the directed graph. For some classes of unmixed edge ideals, we show that the arithmetic rank of the ideal equals projective dimension of its quotient.

متن کامل

Regularity of second power of edge ideals

Let G be a graph with edge ideal I(G). Benerjee and Nevo proved that for every graph G, the inequality reg(I(G)2)≤reg(I(G))+2 holds. We provide an alternative proof for this result.

متن کامل

The Regularity of Binomial Edge Ideals of Graphs

We prove two recent conjectures on some upper bounds for the Castelnuovo-Mumford regularity of the binomial edge ideals of some different classes of graphs. We prove the conjecture of Matsuda and Murai for chordal graphs. We also prove the conjecture due to the authors for a class of chordal graphs. We determine the regularity of the binomial edge ideal of the join of graphs in terms of the reg...

متن کامل

Edge-Coloring Bipartite Graphs

Given a bipartite graph G with n nodes, m edges and maximum degree ∆, we find an edge coloring for G using ∆ colors in time T +O(m log ∆), where T is the time needed to find a perfect matching in a k-regular bipartite graph with O(m) edges and k ≤ ∆. Together with best known bounds for T this implies an O(m log ∆ + m ∆ log m ∆ log ∆) edge-coloring algorithm which improves on the O(m log ∆+ m ∆ ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebraic Combinatorics

سال: 2013

ISSN: 0925-9899,1572-9192

DOI: 10.1007/s10801-013-0473-6